Кубическое уравнение

Например, Введите a=1, b=8, c=16
3 + bx2 + cx + d = 0
x³ +x² +x+ d = 0
X1:+ i
X2:+ i
X3:+ i

 

Кубическое уравнение

Кубическое уравнение в общем виде записывается как:

ax^3+bx^2+cx+d=0

Здесь x – неизвестное переменное, a,b и c – постоянные коэффициенты при x^3,x^2 и x, соответственно, и d – свободный член. Причем, a≠0. Если a=0, то уравнение перестает быть кубическим и превращается в квадратное или линейное.

Используя замену переменных x=t-b/3a , исходное уравнение преобразуется к каноническому виду:

t^3+pt+q=0,

где

p=c/a-b^2/(3a^2 ),q=(2b^3)/(27a^3 )-bc/(3a^2 )+d/a

Введем обозначения:

Q=(p/3)^3+(q/2)^2,α=∛(-q/2+√Q) ,β=∛(-q/2-√Q)

Кубическое уравнение с действительными коэффициентами имеет три корня, причем:

если Q > 0, то один действительный корень и два сопряженных комплексных корня;

если Q = 0, то один действительный корень и еще один отличающийся двукратный действительный корень, или, если p = q = 0, то один трёхкратный действительный корень;

если Q < 0, то три действительных корня.

Согласно формулам итальянского ученого Кардано, корни канонического уравнения записываются в виде:

t_1= α+β,t_2,3=- (α+β)/2±i (α-β)/2 √3,

причем, берутся такие α и β, для которых αβ=- p⁄3.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *